PV[O]H: Noninvasive Enabling Technology, New Physiological Monitoring, and Big Data.
Journal:
Military medicine
Published Date:
Jan 25, 2021
Abstract
INTRODUCTION: Measures of normal and abnormal physiology are interrelated and vary continuously. Our ability to detect and predict changes in physiology in real time has been limited in part by the requirement for blood sampling and the lack of a continuous data stream of various "signals", i.e., measurements of vital signs. It is important to determine which signals are most revealing for detection and treatment of, e.g., internal bleeding, managing fluid balance for mission/combat readiness, and hydration. Although our current algorithm for PV[O]H reflects changes in hematocrit and blood and plasma volumes, additional algorithms utilizing the whole raw PV[O]H data stream, along with other variables, can be constructed. We present a working prototype demonstrating that acceptable size, power, and complexity footprints for military needs can be achieved. Results of previous studies involving humans have demonstrated that PV[O]H can provide simultaneous, noninvasive, in vivo continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate, and breathing rate using a single light source with a reporting frequency of every 3 seconds.