Face Hallucination With Finishing Touches.

Journal: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
PMID:

Abstract

Obtaining a high-quality frontal face image from a low-resolution (LR) non-frontal face image is primarily important for many facial analysis applications. However, mainstreams either focus on super-resolving near-frontal LR faces or frontalizing non-frontal high-resolution (HR) faces. It is desirable to perform both tasks seamlessly for daily-life unconstrained face images. In this paper, we present a novel Vivid Face Hallucination Generative Adversarial Network (VividGAN) for simultaneously super-resolving and frontalizing tiny non-frontal face images. VividGAN consists of coarse-level and fine-level Face Hallucination Networks (FHnet) and two discriminators, i.e., Coarse-D and Fine-D. The coarse-level FHnet generates a frontal coarse HR face and then the fine-level FHnet makes use of the facial component appearance prior, i.e., fine-grained facial components, to attain a frontal HR face image with authentic details. In the fine-level FHnet, we also design a facial component-aware module that adopts the facial geometry guidance as clues to accurately align and merge the frontal coarse HR face and prior information. Meanwhile, two-level discriminators are designed to capture both the global outline of a face image as well as detailed facial characteristics. The Coarse-D enforces the coarsely hallucinated faces to be upright and complete while the Fine-D focuses on the fine hallucinated ones for sharper details. Extensive experiments demonstrate that our VividGAN achieves photo-realistic frontal HR faces, reaching superior performance in downstream tasks, i.e., face recognition and expression classification, compared with other state-of-the-art methods.

Authors

  • Yang Zhang
    Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
  • Ivor W Tsang
    Centre for Artificial Intelligence, University of Technology Sydney, Ultimo, NSW 2007, Australia ivor.tsang@uts.edu.au.
  • Jun Li
    Department of Emergency, Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, 519020, Guangdong Province, China. quanshabai43@163.com.
  • Ping Liu
    Department of Cardiology, the Second Hospital of Shandong University, 250033 Jinan, Shandong, China.
  • Xiaobo Lu
  • Xin Yu
    eSep Inc., Keihanna Open Innovation Center @ Kyoto (KICK), Annex 320, 7-5-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0238, Japan.