Graph neural networks for automated de novo drug design.

Journal: Drug discovery today
Published Date:

Abstract

The goal of de novo drug design is to create novel chemical entities with desired biological activities and pharmacokinetics (PK) properties. Over recent years, with the development of artificial intelligence (AI) technologies, data-driven methods have rapidly gained in popularity in this field. Among them, graph neural networks (GNNs), a type of neural network directly operating on the graph structure data, have received extensive attention. In this review, we introduce the applications of GNNs in de novo drug design from three aspects: molecule scoring, molecule generation and optimization, and synthesis planning. Furthermore, we also discuss the current challenges and future directions of GNNs in de novo drug design.

Authors

  • Jiacheng Xiong
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
  • Zhaoping Xiong
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Kaixian Chen
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Hualiang Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China ; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
  • Mingyue Zheng
    School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China.