Fuzzy rule-based model for outlier detection in a Topical Negative Pressure Wound Therapy Device.

Journal: ISA transactions
Published Date:

Abstract

This paper proposes a novel method for offline outlier detection in nonlinear dynamical systems using an input-output dataset of a Topical Negative Pressure Wound Therapy Device, NPWT. The fundamental characteristics of an NPWT describe a chaotic system whose states vary over time and may result in unpredictable and possibly anomalous divergent behavior in the presence of perturbations and other unmodeled system dynamics, despite a quasi-stable controller. Bacterial Memetic Algorithm, BMA, is used to generate fuzzy rule-based models of the input-output dataset. The error definition in the fuzzy rule extraction features a novel application of the Canberra Distance. The optimal number of rules for identifying the outliers, validated against both artificial and real system datasets, is calculated from the sample of inferred fuzzy models. The optimal number of rules is two in both cases based on the maximum average-error-drop. Using three or more rules results in better error performance; however, the algorithm learns the nuances of the outlier patterns instead. Novel methods for creating the outlier list and determining the optimal number of rules for the outlier detection problem are proposed.

Authors

  • Charles C Phiri
    CC Initiative Ltd, Hampshire, UK; School of Computing, University of Portsmouth, UK. Electronic address: charles.phiri@cc-initiative.com.
  • Cristina Valle
    CC Initiative Ltd, Hampshire, UK; Tokyo Metropolitan University, Tokyo, Japan. Electronic address: cristina.valle@cc-initiative.com.
  • János Botzheim
    Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest, Hungary. Electronic address: botzheim@mogi.bme.hu.
  • Zhaojie Ju
    School of Computing, University of Portsmouth, Portsmouth, Hampshire PO1 3HE, UK.
  • Honghai Liu
    School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK. honghai.liu@port.ac.uk.