Deep learning meets metabolomics: a methodological perspective.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Deep learning (DL), an emerging area of investigation in the fields of machine learning and artificial intelligence, has markedly advanced over the past years. DL techniques are being applied to assist medical professionals and researchers in improving clinical diagnosis, disease prediction and drug discovery. It is expected that DL will help to provide actionable knowledge from a variety of 'big data', including metabolomics data. In this review, we discuss the applicability of DL to metabolomics, while presenting and discussing several examples from recent research. We emphasize the use of DL in tackling bottlenecks in metabolomics data acquisition, processing, metabolite identification, as well as in metabolic phenotyping and biomarker discovery. Finally, we discuss how DL is used in genome-scale metabolic modelling and in interpretation of metabolomics data. The DL-based approaches discussed here may assist computational biologists with the integration, prediction and drawing of statistical inference about biological outcomes, based on metabolomics data.

Authors

  • Partho Sen
    Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
  • Santosh Lamichhane
    Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
  • Vivek B Mathema
    Metabolomics and Systems Biology, Department of Biochemistry, and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
  • Aidan McGlinchey
    School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
  • Alex M Dickens
    Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
  • Sakda Khoomrung
    3 Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand .
  • Matej Orešič
    Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.