Exploiting Global Structure Information to Improve Medical Image Segmentation.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

In this paper, we propose a method to enhance the performance of segmentation models for medical images. The method is based on convolutional neural networks that learn the global structure information, which corresponds to anatomical structures in medical images. Specifically, the proposed method is designed to learn the global boundary structures via an autoencoder and constrain a segmentation network through a loss function. In this manner, the segmentation model performs the prediction in the learned anatomical feature space. Unlike previous studies that considered anatomical priors by using a pre-trained autoencoder to train segmentation networks, we propose a single-stage approach in which the segmentation network and autoencoder are jointly learned. To verify the effectiveness of the proposed method, the segmentation performance is evaluated in terms of both the overlap and distance metrics on the lung area and spinal cord segmentation tasks. The experimental results demonstrate that the proposed method can enhance not only the segmentation performance but also the robustness against domain shifts.

Authors

  • Jaemoon Hwang
    Department of Data Science, Seoul National University of Science and Technology, Seoul 01811, Korea.
  • Sangheum Hwang
    From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.).