Device-Free Human Activity Recognition with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural Network.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Sensor-based human activity recognition (HAR) has attracted enormous interests due to its wide applications in the Internet of Things (IoT), smart homes and healthcare. In this paper, a low-resolution infrared array sensor-based HAR approach is proposed using the deep learning framework. The device-free sensing system leverages the infrared array sensor of 8×8 pixels to collect the infrared signals, which can ensure users' privacy and effectively reduce the deployment cost of the network. To reduce the influence of temperature variations, a combination of the J-filter noise reduction method and the Butterworth filter is performed to preprocess the infrared signals. Long short-term memory (LSTM), a representative recurrent neural network, is utilized to automatically extract characteristics from the infrared signal and build the recognition model. In addition, the real-time HAR interface is designed by embedding the LSTM model. Experimental results show that the typical daily activities can be classified with the recognition accuracy of 98.287%. The proposed approach yields a better result compared to the existing machine learning methods, and it provides a low-cost yet promising solution for privacy-preserving scenarios.

Authors

  • Cunyi Yin
    College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
  • Jing Chen
    Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  • Xiren Miao
    College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
  • Hao Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Deying Chen
    College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.