DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
Journal:
BMC bioinformatics
PMID:
33952199
Abstract
BACKGROUND: Epitope prediction is a useful approach in cancer immunology and immunotherapy. Many computational methods, including machine learning and network analysis, have been developed quickly for such purposes. However, regarding clinical applications, the existing tools are insufficient because few of the predicted binding molecules are immunogenic. Hence, to develop more potent and effective vaccines, it is important to understand binding and immunogenic potential. Here, we observed that the interactive association constituted by human leukocyte antigen (HLA)-peptide pairs can be regarded as a network in which each HLA and peptide is taken as a node. We speculated whether this network could detect the essential interactive propensities embedded in HLA-peptide pairs. Thus, we developed a network-based deep learning method called DeepNetBim by harnessing binding and immunogenic information to predict HLA-peptide interactions.