Cross-Gram matrices and their use in transfer learning: Application to automatic REM detection using heart rate.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jul 21, 2021
Abstract
BACKGROUND AND OBJECTIVES: while traditional sleep staging is achieved through the visual - expert-based - annotation of a polysomnography, it has the disadvantages of being unpractical and expensive. Alternatives have been developed over the years to relieve sleep staging from its heavy requirements, through the collection of more easily assessable signals and its automation using machine learning. However, these alternatives have their limitations, some due to variabilities among and between subjects, other inherent to their use of sub-discriminative signals. Many new solutions rely on the evaluation of the Autonomic Nervous System (ANS) activation through the assessment of the heart-rate (HR); the latter is modulated by the aforementioned variabilities, which may result in data and concept shifts between what was learned and what we want to classify. Such adversary effects are usually tackled by Transfer Learning, dealing with problems where there are differences between what is known (source) and what we want to classify (target). In this paper, we propose two new kernel-based methods of transfer learning and assess their performances in Rapid-Eye-Movement (REM) sleep stage detection, using solely the heart rate.