Detection of segmented uterine cancer images by Hotspot Detection method using deep learning models, Pigeon-Inspired Optimization, types-based dominant activation selection approaches.

Journal: Computers in biology and medicine
Published Date:

Abstract

Uterine cancer consists of cells of a layer that forms the inside of the uterus. Sometimes, as a result of abnormal growth of normal cells, it can damage the surrounding tissues and cause the formation of cancerous cells. In the USA, according to the projections for 2021, approximately 66 thousand new cases of uterine cancer will be detected and approximately 13 thousand of these cancer patients are expected to die from uterine cancer. Early diagnosis of cancer is important. Recently, artificial intelligence-based technologies have been used in the diagnosis and treatment processes of various diseases. In this study, five categories of datasets including normal, abnormal, and benign cells were used. The dataset consists of cellular images and is publicly available. The proposed approach consists of three steps. In the first step, the Hotspot method was used to detect the tumor cells in the images. In the second step, tumor cells that were brought to the fore by segmentation were trained by deep learning models, and activation sets of five types from each deep learning model were created. In the last step, the best activation sets were selected among the activation sets obtained by deep learning models of each type (for five dataset types). Pigeon-Inspired Optimization was used for this selection. Thus, the activation sets with the best performance of the five types were classified by the Softmax method. The overall accuracy success achieved with the approach suggested as a result of the classification was 99.65%.

Authors

  • Mesut Toğaçar
    Department of Computer Technology, Fırat University, Elazig, Turkey. Electronic address: mtogacar@firat.edu.tr.