Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis.

Journal: Scientific reports
Published Date:

Abstract

Computed tomographic pulmonary angiography (CTPA) is the gold standard for pulmonary embolism (PE) diagnosis. However, this diagnosis is susceptible to misdiagnosis. In this study, we aimed to perform a systematic review of current literature applying deep learning for the diagnosis of PE on CTPA. MEDLINE/PUBMED were searched for studies that reported on the accuracy of deep learning algorithms for PE on CTPA. The risk of bias was evaluated using the QUADAS-2 tool. Pooled sensitivity and specificity were calculated. Summary receiver operating characteristic curves were plotted. Seven studies met our inclusion criteria. A total of 36,847 CTPA studies were analyzed. All studies were retrospective. Five studies provided enough data to calculate summary estimates. The pooled sensitivity and specificity for PE detection were 0.88 (95% CI 0.803-0.927) and 0.86 (95% CI 0.756-0.924), respectively. Most studies had a high risk of bias. Our study suggests that deep learning models can detect PE on CTPA with satisfactory sensitivity and an acceptable number of false positive cases. Yet, these are only preliminary retrospective works, indicating the need for future research to determine the clinical impact of automated PE detection on patient care. Deep learning models are gradually being implemented in hospital systems, and it is important to understand the strengths and limitations of these algorithms.

Authors

  • Shelly Soffer
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Eyal Klang
    Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Orit Shimon
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Yiftach Barash
    Department of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Israel.
  • Noa Cahan
    Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv, Israel.
  • Hayit Greenspana
    Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv, Israel.
  • Eli Konen