Multi-Class brain normality and abnormality diagnosis using modified Faster R-CNN.
Journal:
International journal of medical informatics
Published Date:
Sep 16, 2021
Abstract
BACKGROUND AND OBJECTIVE: The detection and analysis of brain disorders through medical imaging techniques are extremely important to get treatment on time and sustain a healthy lifestyle. Disorders cause permanent brain damage and alleviate the lifespan. Moreover, the classification of large volumes of medical image data manually by medicine experts is tiring, time-consuming, and prone to errors. This study aims to diagnose brain normality and abnormalities using a novel ResNet50 modified Faster Regions with Convolutional Neural Network(R-CNN) model. The classification task is performed into multiple classes which are hemorrhage, hydrocephalus, and normal. The proposed model both determines the borders of the normal/abnormal parts and classifies them with the highest accuracy.