Deep learning model to detect significant aortic regurgitation using electrocardiography.
Journal:
Journal of cardiology
PMID:
34544652
Abstract
BACKGROUND: Aortic regurgitation (AR) is a common heart disease, with a relatively high prevalence of 4.9% in the Framingham Heart Study. Because the prevalence increases with advancing age, an upward shift in the age distribution may increase the burden of AR. To provide an effective screening method for AR, we developed a deep learning-based artificial intelligence algorithm for the diagnosis of significant AR using electrocardiography (ECG).