Fine-tuning deep learning model parameters for improved super-resolution of dynamic MRI with prior-knowledge.

Journal: Artificial intelligence in medicine
Published Date:

Abstract

Dynamic imaging is a beneficial tool for interventions to assess physiological changes. Nonetheless during dynamic MRI, while achieving a high temporal resolution, the spatial resolution is compromised. To overcome this spatio-temporal trade-off, this research presents a super-resolution (SR) MRI reconstruction with prior knowledge based fine-tuning to maximise spatial information while reducing the required scan-time for dynamic MRIs. A U-Net based network with perceptual loss is trained on a benchmark dataset and fine-tuned using one subject-specific static high resolution MRI as prior knowledge to obtain high resolution dynamic images during the inference stage. 3D dynamic data for three subjects were acquired with different parameters to test the generalisation capabilities of the network. The method was tested for different levels of in-plane undersampling for dynamic MRI. The reconstructed dynamic SR results after fine-tuning showed higher similarity with the high resolution ground-truth, while quantitatively achieving statistically significant improvement. The average SSIM of the lowest resolution experimented during this research (6.25% of the k-space) before and after fine-tuning were 0.939 ± 0.008 and 0.957 ± 0.006 respectively. This could theoretically result in an acceleration factor of 16, which can potentially be acquired in less than half a second. The proposed approach shows that the super-resolution MRI reconstruction with prior-information can alleviate the spatio-temporal trade-off in dynamic MRI, even for high acceleration factors.

Authors

  • Chompunuch Sarasaen
    Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany; Institute for Medical Engineering, Otto von Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University Magdeburg, Germany. Electronic address: chompunuch.sarasaen@ovgu.de.
  • Soumick Chatterjee
    Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University Magdeburg, Germany; Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany; Data and Knowledge Engineering Group, Otto von Guericke University Magdeburg, Germany.
  • Mario Breitkopf
    Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University Magdeburg, Germany.
  • Georg Rose
    Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg Universitaetsplatz 2, Magdeburg 39106, Germany.
  • Andreas Nürnberger
    Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany; Data and Knowledge Engineering Group, Otto von Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
  • Oliver Speck
    Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University Magdeburg, Germany; German Center for Neurodegenerative Disease, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.