MSF-GAN: Multi-Scale Fuzzy Generative Adversarial Network for Breast Ultrasound Image Segmentation.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Nov 1, 2021
Abstract
Automatic breast ultrasound image (BUS) segmentation is still a challenging task due to poor image quality and inherent speckle noise. In this paper, we propose a novel multi-scale fuzzy generative adversarial network (MSF-GAN) for breast ultrasound image segmentation. The proposed MSF-GAN consists of two networks: a generative network to generate segmentation maps for input BUS images, and a discriminative network that employs a multi-scale fuzzy (MSF) entropy module for discrimination. The major contribution of this paper is applying fuzzy logic and fuzzy entropy in the discriminative network which can distinguish the uncertainty of segmentation maps and groundtruth maps and forces the generative network to achieve better segmentation performance. We evaluate the performance of MSF-GAN on three BUS datasets and compare it with six state-of-the-art deep neural network-based methods in terms of five metrics. MSF-GAN achieves the highest mean IoU of 78.75%, 73.30%, and 71.12% on three datasets, respectively.