Automatic quadriceps and patellae segmentation of MRI with cascaded U -Net and SASSNet deep learning model.
Journal:
Medical physics
Published Date:
Jan 1, 2022
Abstract
PURPOSE: Automatic muscle segmentation is critical for advancing our understanding of human physiology, biomechanics, and musculoskeletal pathologies, as it allows for timely exploration of large multi-dimensional image sets. Segmentation models are rarely developed/validated for the pediatric model. As such, autosegmentation is not available to explore how muscle architectural changes during development and how disease/pathology affects the developing musculoskeletal system. Thus, we aimed to develop and validate an end-to-end, fully automated, deep learning model for accurate segmentation of the rectus femoris and vastus lateral, medialis, and intermedialis using a pediatric database.