First molecular modelling report on tri-substituted pyrazolines as phosphodiesterase 5 (PDE5) inhibitors through classical and machine learning based multi-QSAR analysis.

Journal: SAR and QSAR in environmental research
PMID:

Abstract

Phosphodiesterase 5 (PDE5) falls under a broad category of metallohydrolase enzymes responsible for the catalysis of the phosphodiesterase bond, and thus it can terminate the action of cyclic guanosine monophosphate (cGMP). Overexpression of this enzyme leads to development of a number of pathological conditions. Thus, targeting the enzyme to develop inhibitors could be useful for the treatment of erectile dysfunction as well as pulmonary hypertension. In the current study, several molecular modelling techniques were utilized including Bayesian classification, single tree and forest tree recursive partitioning, and genetic function approximation to identify crucial structural fingerprints important for optimization of tri-substituted pyrazoline derivatives as PDE5 inhibitors. Later, various machine learning models were also developed that could be utilized to predict and screen PDE5 inhibitors in the future.

Authors

  • S Nandi
    Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India.
  • P Kumar
    Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India.
  • S A Amin
    Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
  • T Jha
    Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
  • S Gayen
    Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India.