No more glowing in the dark: how deep learning improves exposure date estimation in thermoluminescence dosimetry.

Journal: Journal of radiological protection : official journal of the Society for Radiological Protection
Published Date:

Abstract

The time- or temperature-resolved detector signal from a thermoluminescence dosimeter can reveal additional information about circumstances of an exposure to ionising irradiation. We present studies using deep neural networks to estimate the date of a single irradiation with 12 mSv within a monitoring interval of 42 days from glow curves of novel TL-DOS personal dosimeters developed by the Materialprüfungsamt NRW in cooperation with TU Dortmund University. Using a deep convolutional network, the irradiation date can be predicted from raw time-resolved glow curve data with an uncertainty of roughly 1-2 days on a 68% confidence level without the need for a prior transformation into temperature space and a subsequent glow curve deconvolution (GCD). This corresponds to a significant improvement in prediction accuracy compared to a prior publication, which yielded a prediction uncertainty of 2-4 days using features obtained from a GCD as input to a neural network.

Authors

  • F Mentzel
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.
  • E Derugin
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.
  • H Jansen
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.
  • K Kröninger
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.
  • O Nackenhorst
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.
  • J Walbersloh
    Materialprüfungsamt NRW, Marsbruchstraåe 186, 44287 Dortmund, NRW, Germany.
  • J Weingarten
    TU Dortmund University, August-Schmidt-Straåe 1, 44227 Dortmund, NRW, Germany.