Personalized Intelligent Syndrome Differentiation Guided By TCM Consultation Philosophy.

Journal: Journal of healthcare engineering
PMID:

Abstract

Traditional Chinese Medicine (TCM) is one of the oldest medical systems in the world, and inquiry is an essential part of TCM diagnosis. The development of artificial intelligence has led to the proposal of several computational TCM diagnostic methods. However, there are few research studies among them, and they have the following flaws: (1) insufficient engagement with the patient, (2) barren TCM consultation philosophy, and (3) inadequate validation of the method. As TCM inquiry knowledge is abstract and there are few relevant datasets, we devise a novel knowledge representation technique. The mapping of symptoms and syndromes is constructed based on the diagnostics of traditional Chinese medicine. As a guide, the inquiry knowledge base is constructed utilizing the "Ten Brief Inquiries," TCM's domain knowledge. Subsequently, a corresponding assessment approach is proposed for an intelligent consultation model for syndrome differentiation. We establish three criteria: the quality of the generated question-answer pairs, the accuracy of model identification, and the average number of questions. Three TCM specialists are asked to undertake a manual evaluation of the model separately. The results reveal that our approach is capable of pretty accurate syndrome differentiation. Furthermore, the model's question and answer pairs for simulated consultations are relevant, accurate, and efficient.

Authors

  • Minghuan Li
    South China University of Technology, School of Computer Science and Engineering, Guangzhou 510000, China.
  • Guihua Wen
    School of Computer Science and Engineering, South China University of Technology, Guangzhou 510000, China. Electronic address: crghwen@scut.edu.cn.
  • Jiahui Zhong
    Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
  • Pei Yang
    Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.