Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation.

Journal: European radiology
Published Date:

Abstract

OBJECTIVE: To train and to test for prostate zonal segmentation an existing algorithm already trained for whole-gland segmentation.

Authors

  • Olivier Rouviere
    Hospices Civils de Lyon, Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Lyon, France.
  • Paul Cezar Moldovan
    Hospices Civils de Lyon, Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Lyon, France.
  • Anna Vlachomitrou
    Philips France, 33 rue de Verdun, CS 60 055, 92156, Suresnes Cedex, France.
  • Sylvain Gouttard
    Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France.
  • Benjamin Riche
    Service de Biostatistique Et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003, Lyon, France.
  • Alexandra Groth
    Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany.
  • Mark Rabotnikov
    Philips, MATAM Industrial Park, 3508409, Haifa, Israel.
  • Alain Ruffion
    Service d'urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.
  • Marc Colombel
    Université de Lyon, F-69003, Lyon, France.
  • Sébastien Crouzet
    Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, F-69437, Lyon, France.
  • Juergen Weese
    Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany.
  • Muriel Rabilloud
    Université de Lyon, F-69003, Lyon, France.