Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Artificial intelligence (AI)-based drug design has great promise to fundamentally change the landscape of the pharmaceutical industry. Even though there are great progress from handcrafted feature-based machine learning models, 3D convolutional neural networks (CNNs) and graph neural networks, effective and efficient representations that characterize the structural, physical, chemical and biological properties of molecular structures and interactions remain to be a great challenge. Here, we propose an equal-sized molecular 2D image representation, known as the molecular persistent spectral image (Mol-PSI), and combine it with CNN model for AI-based drug design. Mol-PSI provides a unique one-to-one image representation for molecular structures and interactions. In general, deep models are empowered to achieve better performance with systematically organized representations in image format. A well-designed parallel CNN architecture for adapting Mol-PSIs is developed for protein-ligand binding affinity prediction. Our results, for the three most commonly used databases, including PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016, are better than all traditional machine learning models, as far as we know. Our Mol-PSI model provides a powerful molecular representation that can be widely used in AI-based drug design and molecular data analysis.

Authors

  • Peiran Jiang
    Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Ying Chi
    Peking University First Affiliated Hospital, Beijing, China.
  • Xiao-Shuang Li
    Drug Discovery Intelligence, AI Center, Alibaba Group DAMO Academy, Wen Yi Xi Road, Yuhang District, Hangzhou City , 310000, Zhejiang, China.
  • Xiang Liu
    College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230009, China.
  • Xian-Sheng Hua
  • Kelin Xia
    Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.