Deep learning for gastroscopic images: computer-aided techniques for clinicians.

Journal: Biomedical engineering online
Published Date:

Abstract

Gastric disease is a major health problem worldwide. Gastroscopy is the main method and the gold standard used to screen and diagnose many gastric diseases. However, several factors, such as the experience and fatigue of endoscopists, limit its performance. With recent advancements in deep learning, an increasing number of studies have used this technology to provide on-site assistance during real-time gastroscopy. This review summarizes the latest publications on deep learning applications in overcoming disease-related and nondisease-related gastroscopy challenges. The former aims to help endoscopists find lesions and characterize them when they appear in the view shed of the gastroscope. The purpose of the latter is to avoid missing lesions due to poor-quality frames, incomplete inspection coverage of gastroscopy, etc., thus improving the quality of gastroscopy. This study aims to provide technical guidance and a comprehensive perspective for physicians to understand deep learning technology in gastroscopy. Some key issues to be handled before the clinical application of deep learning technology and the future direction of disease-related and nondisease-related applications of deep learning to gastroscopy are discussed herein.

Authors

  • Ziyi Jin
    Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
  • Tianyuan Gan
    Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
  • Peng Wang
    Neuroengineering Laboratory, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
  • Zuoming Fu
    Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
  • Chongan Zhang
    Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
  • Qinglai Yan
    Hangzhou Center for Medical Device Quality Supervision and Testing, CFDA, Hangzhou, 310000, People's Republic of China.
  • Xueyong Zheng
    Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China.
  • Xiao Liang
    Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
  • Xuesong Ye
    Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China. yexuesong@zju.edu.cn.