Vulnerability-oriented directed fuzzing for binary programs.

Journal: Scientific reports
Published Date:

Abstract

Directed greybox fuzzing (DGF) is an effective method to detect vulnerabilities of the specified target code. Nevertheless, there are three main issues in the existing DGFs. First, the target vulnerable code of the DGFs needs to be manually selected, which is tedious. Second, DGFs mainly leverage distance information as feedback, which neglects the unequal roles of different code snippets in reaching the targets. Third, most of the existing DGFs need the source code of the test programs, which is not available for binary programs. In this paper, we propose a vulnerability-oriented directed binary fuzzing framework named VDFuzz, which automatically identifies the targets and leverages dynamic information to guide the fuzzing. In specific, VDFuzz consists of two components, a target identifier and a directed fuzzer. The target identifier is designed based on a neural-network, which can automatically locate the target code areas that are similar to the known vulnerabilities. Considering the inequality of code snippets in reaching the given target, the directed fuzzer assigns different weights to basic blocks and takes the weights as feedback to generate test cases to reach the target code. Experimental results demonstrate that VDFuzz outperformed the state-of-the-art fuzzers and was effective in vulnerability detection of real-world programs.

Authors

  • Lu Yu
    State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Yuliang Lu
    College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China.
  • Yi Shen
    Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China. Electronic address: shenyi_777@126.com.
  • Yuwei Li
    College of Electronic Engineering, National University of Defense Technology, Hefei, 230007, China.
  • Zulie Pan
    College of Electronic Engineering, National University of Defense Technology, Hefei, 230007, China.