ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Protein secretion has a pivotal role in many biological processes and is particularly important for intercellular communication, from the cytoplasm to the host or external environment. Gram-positive bacteria can secrete proteins through multiple secretion pathways. The non-classical secretion pathway has recently received increasing attention among these secretion pathways, but its exact mechanism remains unclear. Non-classical secreted proteins (NCSPs) are a class of secreted proteins lacking signal peptides and motifs. Several NCSP predictors have been proposed to identify NCSPs and most of them employed the whole amino acid sequence of NCSPs to construct the model. However, the sequence length of different proteins varies greatly. In addition, not all regions of the protein are equally important and some local regions are not relevant to the secretion. The functional regions of the protein, particularly in the N- and C-terminal regions, contain important determinants for secretion. In this study, we propose a new hybrid deep learning-based framework, referred to as ASPIRER, which improves the prediction of NCSPs from amino acid sequences. More specifically, it combines a whole sequence-based XGBoost model and an N-terminal sequence-based convolutional neural network model; 5-fold cross-validation and independent tests demonstrate that ASPIRER achieves superior performance than existing state-of-the-art approaches. The source code and curated datasets of ASPIRER are publicly available at https://github.com/yanwu20/ASPIRER/. ASPIRER is anticipated to be a useful tool for improved prediction of novel putative NCSPs from sequences information and prioritization of candidate proteins for follow-up experimental validation.

Authors

  • Xiaoyu Wang
    Department of Statistics Florida State University Tallahassee, FL, USA.
  • Fuyi Li
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • Jing Xu
    First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
  • Jia Rong
    Institute for Sustainable Industries & Liveable Cities, Victoria University, Ballarat Road, Melbourne, 3011, Australia.
  • Geoffrey I Webb
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • Zongyuan Ge
    AIM for Health Lab, Faculty of IT, Monash University, Clayton, Victoria, Australia; Monash-Airdoc Research Lab, Faculty of IT, Monash University, Clayton, Victoria, Australia.
  • Jian Li
    Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Jiangning Song
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.