Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications.
Journal:
Journal of biomedical optics
PMID:
35484688
Abstract
SIGNIFICANCE: Deep learning (DL) models are being increasingly developed to map sensor data to the image domain directly. However, DL methodologies are data-driven and require large and diverse data sets to provide robust and accurate image formation performances. For research modalities such as 2D/3D diffuse optical imaging, the lack of large publicly available data sets and the wide variety of instrumentation designs, data types, and applications leads to unique challenges in obtaining well-controlled data sets for training and validation. Meanwhile, great efforts over the last four decades have focused on developing accurate and computationally efficient light propagation models that are flexible enough to simulate a wide variety of experimental conditions.