Assessing Inequity in Green Space Exposure toward a "15-Minute City" in Zhengzhou, China: Using Deep Learning and Urban Big Data.

Journal: International journal of environmental research and public health
PMID:

Abstract

Green space exposure is considered an important aspect of a livable environment and human well-being. It is often regarded as an indicator of social justice. However, due to the difficulties in obtaining green space exposure data from a ground-based view, an effective evaluation of the green space exposure inequity at the community level remains challenging. In this study, we presented a green space exposure inequity assessment framework, integrating the Green View Index (GVI), deep learning, spatial statistical analysis methods, and urban rental price big data to analyze green space exposure inequity at the community level toward a "15-minute city" in Zhengzhou, China. The results showed that green space exposure inequality is evident among residential communities. The areas in the old city were with relatively high GVI and the new city districts were with relatively low GVI. Moreover, a spatially uneven association was observed between the degree of green space exposure and housing prices. Especially, the wealthier communities in the new city districts benefit from low green space, compared to disadvantaged communities in the old city. The findings provide valuable insights for policy and planning to effectively implement greening strategies and eliminate environmental inequality in urban areas.

Authors

  • Jingjing Luo
    State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
  • Shiyan Zhai
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China.
  • Genxin Song
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China.
  • Xinxin He
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China.
  • Hongquan Song
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China.
  • Jing Chen
    Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  • Huan Liu
    Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
  • Yuke Feng
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China.