Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery.

Journal: Scientific reports
Published Date:

Abstract

Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein-ligand with adversarial augmentations network (PLA-Net), a deep learning-based approach to predict target-ligand interactions. PLA-Net consists of a two-module deep graph convolutional network that considers ligands' and targets' most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint ligand-target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52% in mean average precision for 102 target proteins with perfect performance for 30 of them, in a curated version of actives as decoys dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and drug repurposing Hub datasets with the perfect-scoring targets.

Authors

  • Paola Ruiz Puentes
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Laura Rueda-Gensini
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Natalia Valderrama
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Isabela Hernández
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Cristina González
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Laura Daza
    Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Carolina Muñoz-Camargo
    Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Juan C Cruz
    Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
  • Pablo Arbeláez
    Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.