Machine Learning Applications for Chemical Reactions.

Journal: Chemistry, an Asian journal
Published Date:

Abstract

Machine learning (ML) approaches have enabled rapid and efficient molecular property predictions as well as the design of new novel materials. In addition to great success for molecular problems, ML techniques are applied to various chemical reaction problems that require huge costs to solve with the existing experimental and simulation methods. In this review, starting with basic representations of chemical reactions, we summarized recent achievements of ML studies on two different problems; predicting reaction properties and synthetic routes. The various ML models are used to predict physical properties related to chemical reaction properties (e. g. thermodynamic changes, activation barriers, and reaction rates). Furthermore, the predictions of reactivity, self-optimization of reaction, and designing retrosynthetic reaction paths are also tackled by ML approaches. Herein we illustrate various ML strategies utilized in the various context of chemical reaction studies.

Authors

  • Sanggil Park
    Department of Chemistry, Incheon Natoinal University and Research Institute of Basic Sciences, Incheon, 22012, Republic of Korea.
  • Herim Han
    Digital Bio R&D Center, Mediazen, Seoul, 07789, Republic of Korea.
  • Hyungjun Kim
    Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea.
  • Sunghwan Choi
    Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea.