VAC-CNN: A Visual Analytics System for Comparative Studies of Deep Convolutional Neural Networks.

Journal: IEEE transactions on visualization and computer graphics
Published Date:

Abstract

The rapid development of Convolutional Neural Networks (CNNs) in recent years has triggered significant breakthroughs in many machine learning (ML) applications. The ability to understand and compare various CNN models available is thus essential. The conventional approach with visualizing each model's quantitative features, such as classification accuracy and computational complexity, is not sufficient for a deeper understanding and comparison of the behaviors of different models. Moreover, most of the existing tools for assessing CNN behaviors only support comparison between two models and lack the flexibility of customizing the analysis tasks according to user needs. This paper presents a visual analytics system, VAC-CNN (Visual Analytics for Comparing CNNs), that supports the in-depth inspection of a single CNN model as well as comparative studies of two or more models. The ability to compare a larger number of (e.g., tens of) models especially distinguishes our system from previous ones. With a carefully designed model visualization and explaining support, VAC-CNN facilitates a highly interactive workflow that promptly presents both quantitative and qualitative information at each analysis stage. We demonstrate VAC-CNN's effectiveness for assisting novice ML practitioners in evaluating and comparing multiple CNN models through two use cases and one preliminary evaluation study using the image classification tasks on the ImageNet dataset.

Authors

  • Xiwei Xuan
  • Xiaoyu Zhang
    First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
  • Oh-Hyun Kwon
  • Kwan-Liu Ma
    University of California at Davis, Davis, USA.