A fully automatic deep learning algorithm to segment rectal Cancer on MR images: a multi-center study.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

The aim of the study is to present and tune a fully automatic deep learning algorithm to segment colorectal cancers (CRC) on MR images, based on a U-Net structure. It is a multicenter study, including 3 different Italian institutions, that used 4 different MRI scanners. Two of them were used for training and tuning the systems, while the other two for the validation. The implemented algorithm consists of a pre-processing step to normalize and to highlight the tumoral area, followed by the CRC segmentation using different U-net structures. Automatic masks were compared with manual segmentations performed by three experienced radiologists, one at each center. The two best performing systems (called mdl2 and mdl3), obtained a median Dice Similarity Coefficient of 0.68(mdl2) - 0.69(mdl3), precision of 0.75(md/2) - 0.71(md/3), and recall of 0.69(mdl2) - 0.73(mdl3) on the validation set. Both systems reached high detection rates, 0.98 and 0.95, respectively, on the validation set. These encouraging results, if confirmed on larger dataset, might improve the management of patients with CRC, since it can be used as a fast and precise tool for further radiomics analyses. Clinical Relevance - To provide a reliable tool able to automatically segment CRC tumors that can be used as first step in future radiomics studies aimed at predicting response to chemotherapy and personalizing treatment.

Authors

  • Jovana Panic
  • Arianna Defeudis
  • Simone Mazzetti
  • Samanta Rosati
  • Giuliana Giannetto
  • Monica Micilotta
  • Lorenzo Vassallo
  • Marco Gatti
    Department of Surgical Sciences, University of Turin, Turin, Italy.
  • Daniele Regge
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Gabriella Balestra
  • Valentina Giannini