CSatDTA: Prediction of Drug-Target Binding Affinity Using Convolution Model with Self-Attention.

Journal: International journal of molecular sciences
Published Date:

Abstract

Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug-target affinity is crucial. The proposed model, the prediction of drug-target affinity using a convolution model with self-attention (CSatDTA), applies convolution-based self-attention mechanisms to the molecular drug and target sequences to predict drug-target affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations related to this aspect. The convolutional neural network (CNN) only works on a particular region of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively recent technique for capturing long-range interactions that has been used primarily in sequence modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous sequence-based or other approaches and has outstanding retention abilities.

Authors

  • Ashutosh Ghimire
    Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.
  • Hilal Tayara
    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea. Electronic address: hilaltayara@jbnu.ac.kr.
  • Zhenyu Xuan
    Department of Biological Sciences, The University of Texas at Dallas, Richardson, 75080, USA. zhenyu.xuan@utdallas.edu.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.