Validating Automatic Concept-Based Explanations for AI-Based Digital Histopathology.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Digital histopathology poses several challenges such as label noise, class imbalance, limited availability of labelled data, and several latent biases to deep learning, negatively influencing transparency, reproducibility, and classification performance. In particular, biases are well known to cause poor generalization. Proposed tools from explainable artificial intelligence (XAI), bias detection, and bias discovery suffer from technical challenges, complexity, unintuitive usage, inherent biases, or a semantic gap. A promising XAI method, not studied in the context of digital histopathology is automated concept-based explanation (ACE). It automatically extracts visual concepts from image data. Our objective is to evaluate ACE's technical validity following design science principals and to compare it to Guided Gradient-weighted Class Activation Mapping (Grad-CAM), a conventional pixel-wise explanation method. To that extent, we created and studied five convolutional neural networks (CNNs) in four different skin cancer settings. Our results demonstrate that ACE is a valid tool for gaining insights into the decision process of histopathological CNNs that can go beyond explanations from the control method. ACE validly visualized a class sampling ratio bias, measurement bias, sampling bias, and class-correlated bias. Furthermore, the complementary use with Guided Grad-CAM offers several benefits. Finally, we propose practical solutions for several technical challenges. In contradiction to results from the literature, we noticed lower intuitiveness in some dermatopathology scenarios as compared to concept-based explanations on real-world images.

Authors

  • Daniel Sauter
    Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany.
  • Georg Lodde
    Department of Dermatology, University Hospital Essen, 45147 Essen, Germany.
  • Felix Nensa
    Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany.
  • Dirk Schadendorf
    Department of Dermatology, University Hospital Essen, 45147 Essen, Germany.
  • Elisabeth Livingstone
    Department of Dermatology, University Hospital Essen, 45147 Essen, Germany.
  • Markus Kukuk
    Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany.