Protein-Ligand Docking in the Machine-Learning Era.

Journal: Molecules (Basel, Switzerland)
Published Date:

Abstract

Molecular docking plays a significant role in early-stage drug discovery, from structure-based virtual screening (VS) to hit-to-lead optimization, and its capability and predictive power is critically dependent on the protein-ligand scoring function. In this review, we give a broad overview of recent scoring function development, as well as the docking-based applications in drug discovery. We outline the strategies and resources available for structure-based VS and discuss the assessment and development of classical and machine learning protein-ligand scoring functions. In particular, we highlight the recent progress of machine learning scoring function ranging from descriptor-based models to deep learning approaches. We also discuss the general workflow and docking protocols of structure-based VS, such as structure preparation, binding site detection, docking strategies, and post-docking filter/re-scoring, as well as a case study on the large-scale docking-based VS test on the LIT-PCBA data set.

Authors

  • Chao Yang
    Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China.
  • Eric Anthony Chen
    Department of Chemistry, New York University, New York, NY 10003, USA.
  • Yingkai Zhang
    Department of Chemistry , New York University , New York , New York 10003 , United States.