DeepIII: Predicting Isoform-Isoform Interactions by Deep Neural Networks and Data Fusion.

Journal: IEEE/ACM transactions on computational biology and bioinformatics
Published Date:

Abstract

Alternative splicing enables a gene translating into different isoforms and into the corresponding proteoforms, which actually accomplish various biological functions of a living body. Isoform-isoform interactions (IIIs) provide a higher resolution interactome to explore the cellular processes and disease mechanisms than the canonically studied protein-protein interactions (PPIs), which are often recorded at the coarse gene level. The knowledge of IIIs is critical to map pathways, understand protein complexity and functional diversity, but the known IIIs are very scanty. In this paper, we propose a deep learning based method called DeepIII to systematically predict genome-wide IIIs by integrating diverse data sources, including RNA-seq datasets of different human tissues, exon array data, domain-domain interactions (DDIs) of proteins, nucleotide sequences and amino acid sequences. Particularly, DeepIII fuses these data to learn the representation of isoform pairs with a four-layer deep neural networks, and then performs binary classification on the learnt representation to achieve the prediction of IIIs. Experimental results show that DeepIII achieves a superior prediction performance to the state-of-the-art solutions and the III network constructed by DeepIII gives more accurate isoform function prediction. Case studies further confirm that DeepIII can differentiate the individual interaction partners of different isoforms spliced from the same gene. The code and datasets of DeepIII are available at http://mlda.swu.edu.cn/codes.php?name=DeepIII.

Authors

  • Jun Wang
    Department of Speech, Language, and Hearing Sciences and the Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA.
  • Long Zhang
    Hefei Institute of Physical Science, Chinese Academy of Sciences Hefei 230036 PR China liuyong@aiofm.ac.cn zhanglong@aiofm.ac.cn wangchongwen1987@126.com.
  • An Zeng
    1] School of Systems Science, Beijing Normal University, Beijing 100875, P. R. China [2] Institute of Information Economy, Alibaba Business School, Hangzhou Normal University, Hangzhou 310036, P. R. China.
  • Dawen Xia
  • Jiantao Yu
  • Guoxian Yu
    College of Computer and Information Science, Southwest University, Chongqing 400715, China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China.