Neural Networks Reveal the Impact of the Vibrational Dynamics in the Prediction of the Long-Time Mobility of Molecular Glassformers.

Journal: International journal of molecular sciences
PMID:

Abstract

Two neural networks (NN) are designed to predict the particle mobility of a molecular glassformer in a wide time window ranging from vibrational dynamics to structural relaxation. Both NNs are trained by information concerning the local structure of the environment surrounding a given particle. The only difference in the learning procedure is the inclusion (NN ) or not (NN ) of the information provided by the fast, vibrational dynamics and quantified by the local Debye-Waller factor. It is found that, for a given temperature, the prediction provided by the NN is more accurate, a finding which is tentatively ascribed to better account of the bond reorientation. Both NNs are found to exhibit impressive and rather comparable performance to predict the four-point susceptibility χ4(t) at τα, a measure of the dynamic heterogeneity of the system.

Authors

  • Antonio Tripodo
    Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
  • Gianfranco Cordella
    Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
  • Francesco Puosi
    Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
  • Marco Malvaldi
    Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
  • Dino Leporini
    Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.