Prediction of Potential Commercially Available Inhibitors against SARS-CoV-2 by Multi-Task Deep Learning Model.

Journal: Biomolecules
Published Date:

Abstract

The outbreak of COVID-19 caused millions of deaths worldwide, and the number of total infections is still rising. It is necessary to identify some potentially effective drugs that can be used to prevent the development of severe symptoms, or even death for those infected. Fortunately, many efforts have been made and several effective drugs have been identified. The rapidly increasing amount of data is of great help for training an effective and specific deep learning model. In this study, we propose a multi-task deep learning model for the purpose of screening commercially available and effective inhibitors against SARS-CoV-2. First, we pretrained a model on several heterogenous protein-ligand interaction datasets. The model achieved competitive results on some benchmark datasets. Next, a coronavirus-specific dataset was collected and used to fine-tune the model. Then, the fine-tuned model was used to select commercially available drugs against SARS-CoV-2 protein targets. Overall, twenty compounds were listed as potential inhibitors. We further explored the model interpretability and exhibited the predicted important binding sites. Based on this prediction, molecular docking was also performed to visualize the binding modes of the selected inhibitors.

Authors

  • Fan Hu
    Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
  • Jiaxin Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Peng Yin
    Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States.