A reciprocal learning strategy for semisupervised medical image segmentation.

Journal: Medical physics
Published Date:

Abstract

BACKGROUND: Semisupervised strategy has been utilized to alleviate issues from segmentation applications due to challenges in collecting abundant annotated segmentation masks, which is an essential prerequisite for training high-performance 3D convolutional neural networks (CNNs) .

Authors

  • Xiangyun Zeng
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  • Rian Huang
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  • Yuming Zhong
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  • Zeyan Xu
    School of Medicine, South China University of Technology, Guangzhou 510006, China.
  • Zaiyi Liu
    Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
  • Yi Wang
    Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.