Perturbation of Spike Timing Benefits Neural Network Performance on Similarity Search.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Perturbation has a positive effect, as it contributes to the stability of neural systems through adaptation and robustness. For example, deep reinforcement learning generally engages in exploratory behavior by injecting noise into the action space and network parameters. It can consistently increase the agent's exploration ability and lead to richer sets of behaviors. Evolutionary strategies also apply parameter perturbations, which makes network architecture robust and diverse. Our main concern is whether the notion of synaptic perturbation introduced in a spiking neural network (SNN) is biologically relevant or if novel frameworks and components are desired to account for the perturbation properties of artificial neural systems. In this work, we first review part of the locality-sensitive hashing (LSH) of similarity search, the FLY algorithm, as recently published in Science, and propose an improved architecture, time-shifted spiking LSH (TS-SLSH), with the consideration of temporal perturbations of the firing moments of spike pulses. Experiment results show promising performance of the proposed method and demonstrate its generality to various spiking neuron models. Therefore, we expect temporal perturbation to play an active role in SNN performance.

Authors

  • Ziru Wang
  • Jiawen Liu
  • Yongqiang Ma
    School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China.
  • Badong Chen
    Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
  • Nanning Zheng
    Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Pengju Ren