Temporal deep learning framework for retinopathy prediction in patients with type 1 diabetes.

Journal: Artificial intelligence in medicine
Published Date:

Abstract

The adoption of electronic health records in hospitals has ensured the availability of large datasets that can be used to predict medical complications. The trajectories of patients in real-world settings are highly variable, making longitudinal data modeling challenging. In recent years, significant progress has been made in the study of deep learning models applied to time series; however, the application of these models to irregular medical time series (IMTS) remains limited. To address this issue, we developed a generic deep-learning-based framework for modeling IMTS that facilitates the comparative studies of sequential neural networks (transformers and long short-term memory) and irregular time representation techniques. A validation study to predict retinopathy complications was conducted on 1207 patients with type 1 diabetes in a French database using their historical glycosylated hemoglobin measurements, without any data aggregation or imputation. The transformer-based model combined with the soft one-hot representation of time gaps achieved the highest score: an area under the receiver operating characteristic curve of 88.65%, specificity of 85.56%, sensitivity of 83.33% and an improvement of 11.7% over the same architecture without time information. This is the first attempt to predict retinopathy complications in patients with type 1 diabetes using deep learning and longitudinal data collected from patient visits. This study highlighted the significance of modeling time gaps between medical records to improve prediction performance and the utility of a generic framework for conducting extensive comparative studies.

Authors

  • Sara Rabhi
    Telecom SudParis, Institut Mines-Telecom, Paris, Île-de-France, France.
  • Frédéric Blanchard
    CRESTIC EA 3804, Université Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, 51687, Reims, France.
  • Alpha Mamadou Diallo
    CHU de Reims - Hôpital Robert Debré, Service d'Endocrinologie - Diabète - Nutrition, Avenue du Général Koenig, 51092, Reims, France; Laboratoire de recherche en Santé Publique, Vieillissement, Qualité de vie et Réadaptation des Sujets Fragiles, EA 3797, Université Reims Champagne-Ardenne, 51092, Reims, France.
  • Djamal Zeghlache
    Department RS2M, Télécom SudParis, 9 rue Charles Fourier, Evry, 91000, France.
  • Céline Lukas
    CHU de Reims - Hôpital Robert Debré, Service d'Endocrinologie - Diabète - Nutrition, Avenue du Général Koenig, 51092, Reims, France; Laboratoire de recherche en Santé Publique, Vieillissement, Qualité de vie et Réadaptation des Sujets Fragiles, EA 3797, Université Reims Champagne-Ardenne, 51092, Reims, France.
  • Aurélie Berot
    CHU de Reims - American Memorial Hospital - Service de Pédiatrie, 47 rue Cognac Jay, 51092, Reims, France; Laboratoire d'Education et Pratiques de Santé, EA 3412, Université Sorbonne Paris Nord, 74 rue Marcel Cachin, 93017, Bobigny, France.
  • Brigitte Delemer
    CRESTIC EA 3804, Université Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, 51687, Reims, France; CHU de Reims - Hôpital Robert Debré, Service d'Endocrinologie - Diabète - Nutrition, Avenue du Général Koenig, 51092, Reims, France.
  • Sara Barraud
    CRESTIC EA 3804, Université Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, 51687, Reims, France; CHU de Reims - Hôpital Robert Debré, Service d'Endocrinologie - Diabète - Nutrition, Avenue du Général Koenig, 51092, Reims, France.