Semi-supervised Long-tail Endoscopic Image Classification.

Journal: Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih
Published Date:

Abstract

Objective To explore the semi-supervised learning (SSL) algorithm for long-tail endoscopic image classification with limited annotations. Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir, the largest gastrointestinal public dataset with 23 diverse classes. Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling. After splitting the training dataset and the test dataset at a ratio of 4:1, we sampled 20%, 50%, and 100% labeled training data to test the classification with limited annotations. Results The classification performance was evaluated by micro-average and macro-average evaluation metrics, with the Mathews correlation coefficient (MCC) as the overall evaluation. SSL algorithm improved the classification performance, with MCC increasing from 0.8761 to 0.8850, from 0.8983 to 0.8994, and from 0.9075 to 0.9095 with 20%, 50%, and 100% ratio of labeled training data, respectively. With a 20% ratio of labeled training data, SSL improved both the micro-average and macro-average classification performance; while for the ratio of 50% and 100%, SSL improved the micro-average performance but hurt macro-average performance. Through analyzing the confusion matrix and labeling bias in each class, we found that the pseudo-based SSL algorithm exacerbated the classifier's preference for the head class, resulting in improved performance in the head class and degenerated performance in the tail class. Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification, especially when the labeled data is extremely limited, which may benefit the building of assisted diagnosis systems for low-volume hospitals. However, the pseudo-labeling strategy may amplify the effect of class imbalance, which hurts the classification performance for the tail class.

Authors

  • Run-Nan Cao
    School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Meng-Jie Fang
    CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China.
  • Hai-Ling Li
    Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China.
  • Jie Tian
    CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
  • Di Dong
    The Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.