Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection.

Journal: PLoS computational biology
Published Date:

Abstract

Selection protocols such as SELEX, where molecules are selected over multiple rounds for their ability to bind to a target of interest, are popular methods for obtaining binders for diagnostic and therapeutic purposes. We show that Restricted Boltzmann Machines (RBMs), an unsupervised two-layer neural network architecture, can successfully be trained on sequence ensembles from single rounds of SELEX experiments for thrombin aptamers. RBMs assign scores to sequences that can be directly related to their fitnesses estimated through experimental enrichment ratios. Hence, RBMs trained from sequence data at a given round can be used to predict the effects of selection at later rounds. Moreover, the parameters of the trained RBMs are interpretable and identify functional features contributing most to sequence fitness. To exploit the generative capabilities of RBMs, we introduce two different training protocols: one taking into account sequence counts, capable of identifying the few best binders, and another based on unique sequences only, generating more diverse binders. We then use RBMs model to generate novel aptamers with putative disruptive mutations or good binding properties, and validate the generated sequences with gel shift assay experiments. Finally, we compare the RBM's performance with different supervised learning approaches that include random forests and several deep neural network architectures.

Authors

  • Andrea Di Gioacchino
    Laboratoire de Physique de l'Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France.
  • Jonah Procyk
    School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America.
  • Marco Molari
    Laboratoire de Physique de l'Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France.
  • John S Schreck
    National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colorado, United States of America.
  • Yu Zhou
    Department of Biospectroscopy, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.
  • Yan Liu
    Department of Clinical Microbiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China.
  • Rémi Monasson
    Laboratory of Physics of the Ecole Normale Supérieure, CNRS and PSL Research, 75005 Paris, France monasson@lpt.ens.fr.
  • Simona Cocco
    Laboratory of Physics of the Ecole Normale Supérieure, CNRS and PSL Research, 75005 Paris, France cocco@lps.ens.fr.
  • Petr Šulc
    School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America.