TransMorph: Transformer for unsupervised medical image registration.

Journal: Medical image analysis
Published Date:

Abstract

In the last decade, convolutional neural networks (ConvNets) have been a major focus of research in medical image analysis. However, the performances of ConvNets may be limited by a lack of explicit consideration of the long-range spatial relationships in an image. Recently, Vision Transformer architectures have been proposed to address the shortcomings of ConvNets and have produced state-of-the-art performances in many medical imaging applications. Transformers may be a strong candidate for image registration because their substantially larger receptive field enables a more precise comprehension of the spatial correspondence between moving and fixed images. Here, we present TransMorph, a hybrid Transformer-ConvNet model for volumetric medical image registration. This paper also presents diffeomorphic and Bayesian variants of TransMorph: the diffeomorphic variants ensure the topology-preserving deformations, and the Bayesian variant produces a well-calibrated registration uncertainty estimate. We extensively validated the proposed models using 3D medical images from three applications: inter-patient and atlas-to-patient brain MRI registration and phantom-to-CT registration. The proposed models are evaluated in comparison to a variety of existing registration methods and Transformer architectures. Qualitative and quantitative results demonstrate that the proposed Transformer-based model leads to a substantial performance improvement over the baseline methods, confirming the effectiveness of Transformers for medical image registration.

Authors

  • Junyu Chen
    Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA.
  • Eric C Frey
    Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA.
  • Yufan He
    Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
  • William P Segars
    Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC, USA. Electronic address: paul.segars@duke.edu.
  • Ye Li
    Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
  • Yong Du
    Biomedical Engineering DepartmentUniversity of Houston Houston TX 77204 USA.