Implementation of Kalman Filtering with Spiking Neural Networks.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

A Kalman filter can be used to fill space-state reconstruction dynamics based on knowledge of a system and partial measurements. However, its performance relies on accurate modeling of the system dynamics and a proper characterization of the uncertainties, which can be hard to obtain in real-life scenarios. In this work, we explore how the values of a Kalman gain matrix can be estimated by using spiking neural networks through a combination of biologically plausible neuron models with spike-time-dependent plasticity learning algorithms. The performance of proposed neural architecture is verified with simulations of some representative nonlinear systems, which show promising results. This approach traces a path for its implementation in neuromorphic analog hardware that can learn and reconstruct partial and changing dynamics of a system without the massive power consumption that is typically needed in a Von Neumann-based computer architecture.

Authors

  • Alejandro Juárez-Lora
    Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City 07738, Mexico.
  • Luis M García-Sebastián
    Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City 07738, Mexico.
  • Victor H Ponce-Ponce
    Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City 07738, Mexico.
  • Elsa Rubio-Espino
    Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City 07738, Mexico.
  • Herón Molina-Lozano
    Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City 07738, Mexico.
  • Humberto Sossa
    Instituto Politécnico Nacional-Centro de Investigación en Computación, Av. Juan de Dios Batiz S/N, Gustavo A. Madero 07738, México, Distrito Federal, Mexico. Electronic address: hsossa@cic.ipn.mx.