Skeleton-Based Human Pose Recognition Using Channel State Information: A Survey.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

With the increasing demand for human-computer interaction and health monitoring, human behavior recognition with device-free patterns has attracted extensive attention. The fluctuations of the Wi-Fi signal caused by human actions in a Wi-Fi coverage area can be used to precisely identify the human skeleton and pose, which effectively overcomes the problems of the traditional solution. Although many promising results have been achieved, no survey summarizes the research progress. This paper aims to comprehensively investigate and analyze the latest applications of human behavior recognition based on channel state information (CSI) and the human skeleton. First, we review the human profile perception and skeleton recognition progress based on wireless perception technologies. Second, we summarize the general framework of precise pose recognition, including signal preprocessing methods, neural network models, and performance results. Then, we classify skeleton model generation methods into three categories and emphasize the crucial difference among these typical applications. Furthermore, we discuss two aspects, such as experimental scenarios and recognition targets. Finally, we conclude the paper by summarizing the issues in typical systems and the main research directions for the future.

Authors

  • Zhengjie Wang
    School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
  • Mingjing Ma
    College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
  • Xiaoxue Feng
    College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
  • Xue Li
    Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China.
  • Fei Liu
    Department of Interventional Radiology, Qinghai Red Cross Hospital, Xining, Qinghai, China.
  • Yinjing Guo
    College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
  • Da Chen
    College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China.