Quality assurance (QA) for monitoring the performance of assisted reproductive technology (ART) staff using artificial intelligence (AI).
Journal:
Journal of assisted reproduction and genetics
PMID:
36374394
Abstract
PURPOSE: Deep learning neural networks have been used to predict the developmental fate and implantation potential of embryos with high accuracy. Such networks have been used as an assistive quality assurance (QA) tool to identify perturbations in the embryo culture environment which may impact clinical outcomes. The present study aimed to evaluate the utility of an AI-QA tool to consistently monitor ART staff performance (MD and embryologist) in embryo transfer (ET), embryo vitrification (EV), embryo warming (EW), and trophectoderm biopsy (TBx).