DeepIDC: A Prediction Framework of Injectable Drug Combination Based on Heterogeneous Information and Deep Learning.
Journal:
Clinical pharmacokinetics
Published Date:
Nov 11, 2022
Abstract
BACKGROUND AND OBJECTIVE: In clinical practice, injectable drug combination (IDC) usually provides good therapeutic effects for patients. Numerous clinical studies have directly indicated that inappropriate IDC generates adverse drug events (ADEs). The clinical application of injections is increasing, and many injections lack relevant combination information. It is still a significant need for experienced clinical pharmacists to participate in evidence-based drug decision making, monitor medication safety, and manage drug interactions. Meanwhile, a large number of injection pairs and dosage combinations limit exhaustive screening. Here, we present a prediction framework, called DeepIDC, that can expediently screen the feasibility of IDCs using heterogeneous information with deep learning. This is the first specific prediction framework to identify IDCs.