Establishment of a model for predicting the outcome of induced labor in full-term pregnancy based on machine learning algorithm.

Journal: Scientific reports
PMID:

Abstract

To evaluate and establish a prediction model of the outcome of induced labor based on machine learning algorithm. This was a cross-sectional design. The subjects were divided into primipara and multipara, and the risk factors for the outcomes of induced labor were assessed by multifactor logistic regression analysis. The outcome model of labor induced with oxytocin (OT) was constructed based on the four machine learning algorithms, including AdaBoost, logistic regression, naive Bayes classifier, and support vector machine. Factors, such as accuracy, recall, precision, F1 value, and receiver operating characteristic curve, were used to evaluate the prediction performance of the model, and the clinical application of the model was verified. A total of 907 participants were included in this study. Logistic regression algorithm obtained better results in both primipara and multipara groups compared to the other three models. The accuracy of the model for the prediction of "successful induction of labor" was 94.24% and 96.55%, and that of "failed induction of labor" was 65.00% and 66.67% in the primipara and the multipara groups, respectively. This study established a prediction model of OT-induced labor based on the Logistic regression algorithm, with rapid response, high accuracy, and strong extrapolation, which was critical for obstetric clinical nursing.

Authors

  • Tingting Hu
    People's Hospital of Deyang City, Deyang, 618000, Sichuan, China.
  • Sisi Du
    School of Nursing, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
  • Xiaoyan Li
    Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
  • Fang Yang
    College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.
  • Shanshan Zhang
  • Jingjing Yi
    People's Hospital of Deyang City, Deyang, 618000, Sichuan, China.
  • Birong Xiao
    People's Hospital of Deyang City, Deyang, 618000, Sichuan, China.
  • Tingting Li
    Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China.
  • Lin He
    College of Plant Protection, Southwest University, Chongqing, China.