Identifying plastics with photoluminescence spectroscopy and machine learning.

Journal: Scientific reports
Published Date:

Abstract

A quantitative understanding of the worldwide plastics distribution is required not only to assess the extent and possible impact of plastic litter on the environment but also to identify possible counter measures. A systematic collection of data characterizing amount and composition of plastics has to be based on two crucial components: (i) An experimental approach that is simple enough to be accessible worldwide and sensible enough to capture the diversity of plastics; (ii) An analysis pipeline that is able to extract the relevant parameters from the vast amount of experimental data. In this study, we demonstrate that such an approach could be realized by a combination of photoluminescence spectroscopy and a machine learning-based theoretical analysis. We show that appropriate combinations of classifiers with dimensional reduction algorithms are able to identify specific material properties from the spectroscopic data. The best combination is based on an unsupervised learning technique making our approach robust to alternations of the input data.

Authors

  • Benjamin Lotter
    Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
  • Srumika Konde
    Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
  • Johnny Nguyen
    Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
  • Michael Grau
    Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149, Münster, Germany.
  • Martin Koch
    OSTHUS, Aachen, Germany.
  • Peter Lenz
    Department of Physics, Renthof 5, University of Marburg, 35032, Marburg, Germany. Peter.Lenz@physik.uni-marburg.de.