Deep-learning-based AI for evaluating estimated nonperfusion areas requiring further examination in ultra-widefield fundus images.
Journal:
Scientific reports
PMID:
36528737
Abstract
We herein propose a PraNet-based deep-learning model for estimating the size of non-perfusion area (NPA) in pseudo-color fundus photos from an ultra-wide-field (UWF) image. We trained the model with focal loss and weighted binary cross-entropy loss to deal with the class-imbalanced dataset, and optimized hyperparameters in order to minimize validation loss. As expected, the resultant PraNet-based deep-learning model outperformed previously published methods. For verification, we used UWF fundus images with NPA and used Bland-Altman plots to compare estimated NPA with the ground truth in FA, which demonstrated that bias between the eNPA and ground truth was smaller than 10% of the confidence limits zone and that the number of outliers was less than 10% of observed paired images. The accuracy of the model was also tested on an external dataset from another institution, which confirmed the generalization of the model. For validation, we employed a contingency table for ROC analysis to judge the sensitivity and specificity of the estimated-NPA (eNPA). The results demonstrated that the sensitivity and specificity ranged from 83.3-87.0% and 79.3-85.7%, respectively. In conclusion, we developed an AI model capable of estimating NPA size from only an UWF image without angiography using PraNet-based deep learning. This is a potentially useful tool in monitoring eyes with ischemic retinal diseases.