Analysis of movements in tooth removal procedures using robot technology.

Journal: PloS one
PMID:

Abstract

Being one of the oldest en most frequently performed invasive procedures; the lack of scientific progress of tooth removal procedures is impressive. This has most likely to do with technical limitations in measuring different aspects of these keyhole procedures. The goal of this study is to accurately capture the full range of motions during tooth removal as well as angular velocities in clinically relevant directions. An ex vivo measuring setup was designed consisting of, amongst others, a compliant robot arm. To match clinical conditions as closely as possible, fresh-frozen cadavers were used as well as regular dental forceps mounted on the robot's end-effector. Data on 110 successful tooth removal experiments are presented in a descriptive manner. Rotation around the longitudinal axis of the tooth seems to be most dominant both in range of motion as in angular velocity. Buccopalatal and buccolingual movements are more pronounced in the dorsal region of both upper and lower jaw. This study quantifies an order of magnitude regarding ranges of motion and angular velocities in tooth removal procedures. Improved understanding of these complex procedures could aid in the development of evidence-based educational material.

Authors

  • Tom van Riet
    Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.
  • Willem de Graaf
    Department of Cognitive Robotics, Mechanical, Maritime and Materials Engineering (3ME), Delft University of Technology, Delft, The Netherlands.
  • Jan de Lange
    Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.
  • Jens Kober